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Abstract—Hyperspectral images provide rich spectral informa-
tion, while LiDAR data supplements three-dimensional spatial
structural information. The combination of the two can effectively
improve the accuracy of land cover classification. However, how to
effectively utilize their complementary advantages for cross modal
feature fusion and enable the fused joint features to capture global
contextual information while maintaining local texture details is
a challenge. In addition, most existing joint classification methods
based on attention and transformer only perform global modeling
in the spatial domain, ignoring the sensitivity of the frequency
domain to fine features. In this article, a multilevel feature gated
fusion based spatial and frequency domain attention network is
proposed for joint classification of hyperspectral and LiDAR data.
First, extract multilevel convolutional features from hyperspectral
and LiDAR images and adaptively fuse them through a gating
mechanism. Then, design an attention module that combines spa-
tial frequency domain to model global fine features. In addition,
a carefully designed texture feature extraction module is utilized
to further enhance local fine feature extraction. The experimental
results on three commonly used datasets show that the classification
performance of the proposed method is significantly better than
some state-of-the-art methods.

Index Terms—Attention, classification, deep learning, hypersp-
ectral imaging (HSI), LIDAR data.

I. INTRODUCTION

Y COMBINING the advantages of different sensors, mod-
B ernremote sensing technology makes the classification and
recognition of ground objects achieve unprecedented accuracy
and efficiency. Among them, hyperspectral images (HSI) pro-
vide rich spectral information, while LiDAR supplements de-
tailed information on spatial three-dimensional structures. HSI
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has dozens to hundreds of bands and can capture the reflection
characteristics of surface objects at different wavelengths [1].
This almost continuous spectral resolution enables hyperspectral
data to perform well in identifying land features with subtle spec-
tral differences and is widely used in fields such as marine hydro-
logical exploration [2] and precision agriculture [3]. However,
the limitation of hyperspectral data is that it mainly provides
two-dimensional plane information and lacks height data of land
features. Therefore, it is necessary to introduce LiDAR data.
LiDAR technology measures distance by actively emitting laser
pulses and receiving their echoes, thereby obtaining elevation
information of ground objects. LIDAR can not only penetrate
clouds and vegetation, but also generate digital elevation models,
providing precise measurements in the vertical direction. This
feature makes it a powerful tool in fields such as terrain surveying
[5], forestry monitoring [6], meteorological observation [7], and
urban planning [8]. Combining HSI and LiDAR data can further
enhance the accuracy and reliability of land cover classification.
Therefore, researching image classification methods based on
the fusion of HST and LiDAR information has gradually become
a hot topic.

In the early work of HSI and LiDAR data classification, most
methods were based on machine learning to extract shallow
features for land cover classification. For example, some meth-
ods are based on support vector machines, Gaussian maximum
likelihood [9], and random forests [10]. In [11], some extended
morphological attribute contours were designed for joint classi-
fication. Ghamisi et al. [12] utilized attribute contours to extract
spatial information as features for classification. A graph based
fusion method [13] has been proposed, which improves the
extraction method of morphological contours. Rasti et al. [14]
Combined with extinction profile joint feature extraction and
total variation analysis. However, the above work relies on man-
ually designed algorithms to select and extract features, overly
relying on prior knowledge, and cannot adaptively summarize
the intrinsic features of remote sensing data.

In recent years, the rapid development of deep learning has
promoted innovation in the field of remote sensing image pro-
cessing technology [15], [16], [17], [18], [19]. Convolutional
neural networks (CNNs) have shown great potential in remote
sensing image classification due to their powerful feature ex-
traction and deep semantic automatic learning capabilities [20],
[21], [22]. For example, [23] proposed a coupled CNN and
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weighted summation strategy to improve joint classification
accuracy, while [24] employed a three-branch neural network
to enhance and learn spatial and spectral features. In response
to the limitation of traditional CNN convolution kernels having
a single scale, [25] proposed a classification model based on di-
lated convolution, which demonstrates the advantages of dilated
convolution in hyperspectral image processing. To alleviate the
possible overfitting caused by deep CNNs, [26] proposed an acti-
vation function called Lush and established a multilayer feature
fusion bias network based on it. To enhance the interpretabil-
ity of remote sensing data fusion, [27], [28] explores feature
fusion from the perspective of geometric structure. However,
although CNN based methods perform well in extracting local
spatial features, they cannot fully utilize the global sequence
characteristics of spectral features.

Transformer has become an important tool in fields such as
natural language processing [29] and computer vision [30] due to
its powerful global modeling capabilities. Thanks to its unique
attention mechanism, transformer can effectively improve the
long distance feature extraction ability and recognition perfor-
mance of the model. Therefore, transformer was introduced
into the field of remote sensing image processing, and some
models that combine CNN and attention mechanisms [31], [32],
[33], [34] were proposed, demonstrating excellent classification
performance. For example, [32] proposed a feature complemen-
tary attention network based on adaptive knowledge filtering
to address the issue of redundant information in HSI feature
extraction. Ding et al. [33] proposes a global local transformer
that learns and fuses spatial and spectral features from multiple
input scales. To improve the ability to extract key information
features, [34] proposed a dual multiscale adaptive attention
mechanism. Considering the complementarity of multisource
data, [35] proposes a hierarchical mutual-assistance learning
mechanism based on height information to enhance modality
specific features. In the task of joint classification, some atten-
tion mechanisms have also been widely studied. For example,
methods such as [36] were based on squeeze-and-excitation (SE)
attention to adaptively adjust the information exchange of modal
features, while some methods have improved traditional atten-
tion. Specifically, [37] uses graph convolutional networks to con-
struct attention weights, while [38] directly takes features from
different modalities as input and participates in the calculation
process of attention weights. However, SE attention focuses on
modeling the relationships between channels and lacks effective
attention to spatial information. Although traditional attention
can capture global dependencies, its matrix operation method
can lead to high computational complexity.

To further improve the computational efficiency and gen-
eralization ability of the model while preserving important
frequency domain information of features, some methods in-
troduce fast Fourier transform (FFT) [39], [40]. FFT has the
characteristics of parameter free and fast computation, which
can help models effectively learn features in the frequency do-
main. Combining it with deep learning can improve the model’s
ability to process complex data. Most existing joint classification
methods based on attention mechanisms mainly focus on learn-
ing global features in the spatial domain, often neglecting the
importance of frequency domain features. In fact, the features
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extracted from the frequency domain can comprehensively cover
all frequency ranges, thus better capturing short-range and long-
range dependencies. More importantly, due to its sensitivity to
subtle changes, the frequency domain can identify those small
but crucial frequency variations of the signal, providing richer
and more detailed information. Therefore, exploring how to
effectively utilize frequency domain features into some network
architectures such as CNN and attention may become a key to
further improving joint classification performance.

Based on the above analysis, this article proposes a multilevel
feature gated fusion based spatial and frequency domain atten-
tion network (GFSFN) for joint classification of hyperspectral
and LiDAR data. First, extract single modal multilevel dilated
convolution features and fuse spatial features, and then perform
adaptive fusion through a gating mechanism module. Second,
design a spatial frequency domain attention module that maps
features to the frequency domain through FFT to obtain attention
weights, and combines the original spatial domain features to
effectively model global fine features. In addition, the texture
feature extraction module based on convolution has a significant
effect in capturing local fine features.

The main contributions of this article are as follows.

1) To fully integrate the features of hyperspectral and LiDAR
images, a two-stage multilevel cross modal feature gating
fusion (CMGF) module was carefully designed. In the
first stage, through the cross modal space feature (CMSF)
module, the dilated convolution features of two modalities
at the same channel depth were fused to reduce the differ-
ences between heterogeneous data and achieve effective
cross modal fusion. In the second stage, a multilevel fea-
ture gated fusion (MLGF) module was constructed. This
module can finely control the joint features of different
depths obtained in the previous stage, and adaptively
adjust the proportion of feature flow from each layer to the
next stage. This design makes the feature fusion process
more flexible and efficient, thereby further improving the
performance and accuracy of the model.

2) A spatial and frequency domain attention (S&FA) module
was constructed to accurately model global features and
long-range dependencies. Specifically, construct an atten-
tion weight matrix in the frequency domain and map it
back to the spatial domain to combine it with the original
detail information. By learning the interaction between
frequency and spatial domain features, this model can
capture the global structure of joint features, especially
fine features, thereby improving the richness and accuracy
of feature representation.

3) A convolutional based texture feature extraction module
(CTEM) is proposed to effectively capture local texture
features, thereby further enhancing the network’s ability
to extract fine local features and providing more detailed
and robust feature support for classification.

II. METHODOLOGY

The joint classification framework of HSI and LiDAR data
proposed in this article is shown in Fig. 1, which mainly consists
of three stages. First, two single-model features are extracted and
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Fig. 1. Overall structure of the proposed GFSFN.

fused. Then, fine features are modeled through global local dual
branches. Finally, the features are input into the classification
head. Let Xh € RT*W>30 and X € RH*W*C be the patches
for HST and LiDAR, respectively, where Hx W is the spatial size
and C represents the number of channels in the LiDAR patch.
First, perform PCA dimensionality reduction on the HSI patch.
To obtain more receptive fields, three dilated convolution blocks
are utilized to extract multilevel convolution features from the
input HSI patch and LiDAR patch, with channel depths of 32, 64,
and 128, respectively. The calculation process can be described
as follows:

BN (Mish (DConv (X'm))) (D

Fm'™' = BN (Mish (DConv (Fm'))). 2)

Among them, BN(-), Mish(-), and DConv(-) represent batch
normalization, activation function Mish, and dilated convolu-
tion, respectively. i€{1,2}, m&{h,l}, h and [ represent HSI and
LiDAR, and F'm/’ represents the characteristics of mode m at
the depth of the ith layer channel. A detailed introduction to the
details of each module is provided as follows.

A. CMGF

To fully integrate the multilevel convolutional features ex-
tracted from HSI and LiDAR, a CMGF module was designed,
which is a two-stage feature fusion process. To reduce the
differences in heterogeneous multimodal data, considering the
semantic differences contained in different depth features, the
spatial features of two modalities are first fused at the same chan-
nel depth. The calculation process of CMSF can be represented
as follows:

Fg' = BN(Lush (ConV (AVg (Fhl) + Avg (FZZ))) )
Fs' = BN(Lush (Conv (Max (Fh') +Max (FI)))  (4)

Ff* = BN (Lush (Conv (Fg' + F's"))). (5)

(Multi level feature gating fusion)

Fh':Hsi feature of the i-th channel depth
FI'Lidar feature of the i-th channel depth

Ff':Fusion feature of the i-th channel depth

Lush Sigmoid

M Maxpooling { A Avgpooling
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Among them, Avg(-), Max(-), Lush(-), and Conv(-) represent
average pooling, max pooling, Lush activation function, and
standard convolution, respectively. To reduce modal differences,
a cross-modal fusion of spatial features is performed. Fg°
represents the overall spatial features of the ith layer, which
is obtained by performing average pooling operations on the
spectral dimension 30 of HSI features and the channel dimension
C of LiDAR features through convolutional blocks. Similarly,
Fs® represents the significant spatial features of the ith layer
obtained by max pooling. To enhance the representation ability
of features, the overall spatial features and salient spatial features
are summed to extract convolutional features, resulting in three
joint features Ff? with different channel depths. However,
simple addition operations cannot effectively fuse these joint
features at different depths, thus failing to fully utilize the
different semantic features at different depths. Inspired by the
gating concept in long short-term memory networks, in this
article, an MLGF is proposed to adaptively fuse joint features
of different depths. The calculation process of MLGF can be
described as follows:

Ff" = Lush(BN (Conv (Ff7))
x Sigmoid (BN (Conv (Ff*)))
Ff"=BN (Lush (Ff" + Ff + FfY)).

Among them, Sigmoid(-) represents the activation function
Sigmoid. The joint features F' f ? at all levels are unified in terms
of channel number through convolution and batch normalization
to facilitate further fusion. In addition, in our previous work
[26], we proposed a Lush function that can effectively prevent
network overfitting and has good generalization performance.
This article uses Lush as the activation function to increase
nonlinear expression. Sigmoid is adopted as the weight generator
to generate weights that control the importance of features at
this level. Following, nonlinear features multiply with weights
to obtain the final output features F' f ¥ at this level. The three
levels of features are added together, and after Lush and batch
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next layer.

Fig. 2. Structure diagram of S&FA.

B. S&FA

The attention mechanism simulates the way the human visual
system processes information, allowing the model to focus more
on key parts of the input information and effectively improve the
classification performance of the network. However, most exist-
ing attention mechanisms for joint classification methods only
model globally in the spatial domain, while features in frequency
domain also have significant value and potential that cannot be
ignored. Considering the complexity of matrix multiplication
in traditional attention, this paper proposes a S&FA module,
whose structure is shown in Fig. 2. The process of S&FA can be
represented as follows:

Q = Mish (Conv (F'f" (7)
K = Mish (Conv (F'f" (8)
Attn = FFT (Q) x FFT (K) ©)
OutA = Softmax (IFFT (Att)) x V' (10)
FG = xOutA + Ff". (11)

Among them, Softmax(-), FFT(-), and IFFT(-) represent the
activation function Softmax, FFT, and inverse fast Fourier trans-
form (IFFT), respectively. The original joint feature F' f ' is used
as the module input, and it is convolved to obtain Q and K, which
are mapped to the frequency domain through FFT and multiplied
element by element to obtain the weight matrix Attn. Map Attn
back to the spatial domain through IFFT and multiply it with the
original feature F' f " as V to obtain the output OutA. In addition,

)
)
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Fig. 3.  Structure diagram of CTEM.

A is adopted as an automatically learned parameter in the model
to control the strength of attention features, and skip connections
are utilized in the final stage to prevent network overfitting. FG
is the final output of the S&FA module.

C. CTEM

Local details are crucial for understanding image categories,
as capturing subtle local features often determines the model’s
ability to accurately identify and distinguish similar categories.
This article proposes a CTEM module, which structure is shown
in Fig. 3. The process of CTEM can be described as follows:

Fdw = DwConv (Mish (Conv (BN (F'f")))) (12)
Fd = Mish (DConv (BN (F'f"))) (13)
FL = BN (Conv (Fdw x Fd)) +BN(Ff").  (14)

DwConv (-) represents depth-wise convolution. The multipli-
cation of two sets of deep features, Fdw and Fd, can effectively
enhance the weight of important local features in the joint
features, thereby significantly improving classification accuracy.
Finally, residual branches are used to avoid network degradation,
and FL is the final output of the CTEM module.

D. Classification Head

To improve the nonlinear expression ability of the network,
the global fine feature F'G and the local fine feature FL are
multiplied after Mish activation, and then class prediction is
performed. The calculation process can be described as follows:

Yels = FC(GAP (Mish (FL) x Mish (FG)).  (15)

Among them, FC (-) and GAP (-) represent linear layer and
global average pooling, respectively, while Ycls is the category
predicted for the current input. Training with cross entropy loss,
the calculation process of the loss Lcls can be described as
follows:

Lels = =Y Yt -log (Yels) (16)

where Y7 is the ground-truth label.

III. EXPERIMENTAL RESULTS AND ANALYSIS

To evaluate the effectiveness of the proposed GFSFN method,
a lot of experiments were performed on three commonly used
datasets. Some experimental comparisons between the proposed
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Fig.4. Houston2013 dataset. (a) Pseudo colorimage of HSI. (b) LiDAR image.

(b)

Fig. 5. Trento dataset. (a) Pseudo color image of HSI. (b) LiDAR image.

method and other advanced methods were conducted. The ex-
perimental results demonstrate the effectiveness of the proposed
method, and the datasets used in the experiment include Houston
dataset, Trento dataset, and MUUFL dataset.

A. Dataset Description

1) Houston 2013 Dataset: This dataset was obtained by the
National Center for Airborne Laser Mapping in June 2012 on
the University of Houston campus and adjacent urban areas, and
was provided by the IEEE GRSS Data Fusion Competition. HSI
includes 144 bands with a wavelength range of 0.38-1.05 um.
And LiDAR data are represented by a single band. The spatial
size of the HSI and LiDAR datasets is 349 x 1905 pixels, with
a spatial resolution of 2.5 m. This dataset contains 15 different
categories, totaling 15 029 real samples. Fig. 4 shows the pseudo
color image of HSI and the grayscale image of LiDAR.

2) Trento Dataset: This dataset was collected in a rural area
located in the southern part of Trento, Italy. HSI has 63 spectral
bands with a wavelength range from 0.42 to 0.99 pym. LiDAR
data are represented by a single band. The spatial size of the
HSI and LiDAR datasets is 166 x 600 pixels, with a spatial
resolution of 1 m. This dataset contains 6 different categories,
totaling 30214 real samples. Fig. 5 shows the pseudo color image
of HSI and the grayscale image of LiDAR.

3) MUUFL Dataset: This dataset was obtained in November
2010 in the campus area of South Mississippi Bay Park Univer-
sity. HSI has 72 spectral bands with a wavelength range from
0.38 to 1.05 pm. LiDAR data are represented by two bands with
a wavelength of 1.06 pum. The spatial size of the HSI and LiDAR
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Fig. 6. MUUFL dataset. (a) Pseudo color image of HSI. (b) LiDAR image.

datasets is 325 x 220 pixels. This dataset contains 11 different
categories, totaling 53467 real samples. Fig. 6 shows the pseudo
color image of HSI and the grayscale image of LiDAR.

B. Experimental Setup

The length and width of HSI and LiDAR patches are setto 11,
and the number of channels in HSI patch is reduced to 30 after
PCA. The LiDAR Patch has one channel for the Houston and
Trento datasets, and two channels for the MUUFL dataset. The
experiments of this method and other deep learning methods
were implemented on the PyTorch platform, with a CPU of i5-
12400F, a GPU of NVIDIA RTX 4060Ti, and 32 GB of RAM.
To optimize the network, Adam optimizer was chosen as the
initial optimizer with a learning rate of 0.0001. For the training
phase, the batch size and training epochs are set to 64 and 100,
respectively.

This article uses four common evaluation metrics to evalu-
ate the classification performance of the model, namely over-
all accuracy (OA), average accuracy (AA), kappa coefficient
(KAPPA), and accuracy per class. For each indicator, higher
values indicate more accurate classification.

C. Comparison of Classification Performance

To validate the effectiveness of the proposed GFSFN model,
we compared it with several state-of-the-art joint classification
models for HSI and LiDAR, including FusAtNet [41], SZENet
[36], GLT [33], MFT [42], HCT [43], CALC [44], GAMF [45],
and CrossHL [46]. According to the parameter settings described
in the original paper, the experimental results are the average of
ten independent runs of the network.

Tables I-III provide the classification accuracy of each
method. The best results are highlighted in bold. On the Houston
13 dataset, our model achieved the best performance in 10 out
of 15 categories, particularly in categories such as residential,
commercial, and railway. This achievement is attributed to the
S&FA in our network. This module enhances the model’s ability
to compare and learn complex data by learning the interac-
tion between spectral and spatial features, thereby significantly



SHI et al.: MULTILEVEL FEATURE GATED FUSION BASED SPATIAL AND FREQUENCY DOMAIN ATTENTION NETWORK

5965

TABLE I
COMPARISON OF CLASSIFICATION ACCURACY (%) OF DIFFERENT METHODS ON THE HOUSTON 2013 DATASET

No. Class(Train/Test) performance
FusAtNet S?ENet GLT MEFT HCT CALC GAMF CrossHL Ours
1 Healthy grass (20/1231) 93.43 86.17 87.24 93.31 96.60 90.01 94.05 97.51 94.50
2 Stressed grass (20/1234) 89.81 98.60 99.02 94.94 97.05 97.97 96.99 96.18 99.79
3 Synthetis grass (20/677) 99.70 99.63 100 99.05 99.38 99.11 99.48 99.56 99.79
4 Tree (20/1224) 95.74 93.40 97.79 92.78 97.60 92.48 95.02 93.82 99.30
5 Soil (20/1222) 98.67 99.85 99.83 98.48 100 100 99.27 100 100
6 Water (20/305) 94.59 97.57 94.42 96.56 97.64 95.74 97.44 95.51 98.46
7 Residential (20/1248) 88.88 93.97 87.25 96.16 88.89 97.12 95.12 93.75 97.95
8 Commercial (20/1224) 83.34 74.79 92.56 77.07 86.31 82.03 71.92 76.54 95.71
9 Road (20/1232) 54.38 83.74 96.99 7743 81.49 84.66 79.81 79.81 92.14
10 Highway (20/1207) 72.39 90.82 98.01 94.72 97.27 99.75 93.10 93.05 98.38
11 Railway (20/1215) 83.54 92.58 96.04 85.28 96.86 96.54 85.79 89.61 97.19
12 Park lot 1 (20/1213) 75.49 91.81 92.41 91.58 92.09 89.37 92.06 93.20 92.52
13 Park lot 2 (20/449) 87.42 92.65 98.88 98.08 96.79 96.44 93.85 96.97 99.29
14 Tennis court (20/408) 92.21 100 99.97 99.56 99.88 100 99.56 99.95 100
15 Running track (20/640) 90.34 99.98 100 99.77 99.95 99.53 100 99.69 100
OA (%) 85.21 91.87 95.44 91.64 94.33 93.91 91.67 92.58 97.23
AA (%) 86.66 93.04 96.02 92.98 95.19 94.72 92.90 93.68 97.67
KAPPA*100 84.00 91.21 95.07 90.96 93.87 9341 91.00 91.98 97.01
TABLE II
COMPARISON OF CLASSIFICATION ACCURACY (%) OF DIFFERENT METHODS ON THE TRENTO DATASET
performance
No. Class(Train/Test)
FusAtNet S?ENet GLT MFT HCT CALC GAMF CrossHL Ours
1 Apple trees (20/4014) 96.57 98.82 98.97 98.29 98.94 99.57 98.85 99.27 99.86
2 Buildings (20/2883) 99.28 96.51 98.30 95.06 96.53 98.67 98.37 97.43 98.48
3 Ground (20/459) 97.84 99.78 99.37 98.37 97.67 98.61 100 99.83 98.00
4 Woods (20/9103) 99.92 99.84 100 99.98 100 100 99.88 99.99 100
5 Vineyard (20/10481) 98.18 99.94 100 99.95 99.15 100 99.95 99.94 99.98
6 Roads (20/3154) 91.43 93.24 95.13 92.29 95.31 94.37 93.50 88.48 98.05
OA (%) 97.88 98.72 99.15 98.44 98.70 99.20 98.96 98.42 99.59
AA (%) 97.20 98.02 98.39 97.32 97.93 98.54 98.43 97.49 99.06
KAPPA*100 97.19 98.30 98.41 97.92 98.27 98.94 98.61 97.90 99.46

improving classification accuracy. On the Trento dataset, our
model achieved high accuracy of 99.86% on apple trees and
100% on tree categories, respectively. This outstanding per-
formance is attributed to the CTEM module we designed,
which has a high sensitivity to complex textures. Subsequently,
the effectiveness of the module will be further validated and
demonstrated through visualization analysis of the heat map.
The MUUFL dataset is the most challenging among the three
datasets, nonetheless, our proposed method still achieves the best
results. This is due to our multilevel gating fusion mechanism,
which effectively reduces the differences between heteroge-
neous data and promotes cross modal fusion.

Overall, on the three datasets, the classification accuracy of
the proposed method is significantly higher than other advanced
methods, and the OA of the proposed method is 1.79%, 0.39%,
and 0.53% higher than those of the suboptimal method, respec-
tively, demonstrating the superiority of the proposed method.
Among these comparison methods, FusAtNet based on attention
mechanism and graph attention performs poorly in GAMF. In

transformer based methods, the classification performance of
GLT is significantly better than that of MFT and HCT due to the
input of multiple spatial scales. However, in the MUUFL dataset,
the OA of CrossHL is higher than that of GLT, which proves the
effectiveness of the cross modal attention mechanism. Overall,
models based on the local-global approach, such as GLT, HCT,
and the model proposed in this article, have shown relatively
good classification performance. Figs. 7-9 show the classifica-
tion maps of each method. It can be seen that compared with
other methods, the classification performance of our method is
better, retaining more texture details, especially in the complex
area on the right side of Houston 2013 that is obscured by clouds
and mist. The quantitative results shown in the table also confirm
this.

D. Analysis of Module

Table IV shows the impact of different modules on classifica-
tion performance. In Case 1, the HSI and LiDAR inputs in the
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TABLE III

COMPARISON OF CLASSIFICATION ACCURACY (%) OF DIFFERENT METHODS ON THE MUUFL DATASET
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performance

No. Class(Train/Test)
FusAtNet  S?ENet GLT MET HCT CALC GAMF CrossHL Ours
Trees(20/23226) 84.52 88.00 89.23 88.46 84.04 90.89 88.32 91.68 90.17
2 Mostly grass(20/4250) 68.96 75.15 79.07 70.90 75.49 77.18 79.18 67.60 77.94
3 Slll\ffi:fe‘izggj’&‘;) 52.46 56.05 63.27 65.85 64.42 65.16 60.45 71.55 71.96
4 Dirt and sand(20/1806) 70.23 87.65 94.32 93.47 91.85 97.95 94.13 89.39 91.91
5 Road(20/6667) 78.20 81.76 83.67 76.42 73.80 70.24 79.20 83.70 84.03
6 Water(20/446) 96.21 99.78 99.89 99.78 99.82 100 99.78 96.23 99.93
7 ha dﬁ;‘vl}gg}% ) 74.02 90.19 93.55 84.36 83.43 78.22 80.98 89.77 88.59
8 Building(20/6220) 81.46 91.45 93.50 91.52 91.28 92.17 92.54 94.23 9435
9 Sidewalk(20/1365) 60.63 61.68 58.41 5220 51.63 41.25 32.67 56.26 61.34
10 Yellow curb(20/163) 66.01 74.23 73.93 70.06 84.72 65.03 85.28 73.19 87.98
11 Cloth panels(20/249) 93.82 96.39 99.08 99.56 98.31 96.39 96.39 97.83 99.48
OA (%) 76.58 82.00 84.55 82.18 80.02 82.54 81.96 85.43 85.96
AA (%) 75.14 82.03 84.36 81.14 81.71 77.38 80.81 82.86 86.15
KAPPA*100 70.06 76.95 80.12 77.13 74.54 79.50 76.84 81.07 81.81

Fig.7. Classification maps of different methods on the Houston 2013 dataset. (a) Ground true. (b) FusAtNet (85.21%). (c) S2ENet (91.87%). (d) GLT (95.44%).
(e) MFT (91.64%). (f) HCT (94.33%). (g) CALC (93.91%). (h) GAMF (91.67%). (i) CrossHL (92.58%). (j) GFSEN (97.23%).

third layer of single-modal features obtained after three dilated
convolutional blocks, that is, th3 and I3, are directly added into
the classification head. Case 2 adds a CMSF module to fuse
spatial features of each single modal feature layer, concatenate
them according to channel dimensions, and enter the classifi-
cation head. Thanks to the effectiveness of hierarchical fusion

of multilevel dilated convolution features, the addition of CMSF
significantly improved the OA on three datasets, especially in the
MUPFFL dataset where the OA increased by 1.41%. Case 3 adds
an MLGF module based on Case 2 to fuse multilevel features
instead of concatenation. Add MLGF module to control the
proportion of joint feature flow at different depths for adaptive
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Fig. 8.

Classification maps of different methods on the Trento dataset. (a) Ground true. (b) FusAtNet (97.88%). (c) SZENet (98.72%). (d) GLT (99.15%).

(e) MFT (98.44%). (f) HCT (98.70%). (g) CALC (99.20%). (h) GAMF (98.96%). (i) CrossHL (98.42%). (j) GFSEN (99.59%).

TABLE IV
SOME ABLATION EXPERIMENT RESULTS
component Houston2013 Trento MUUFL
Case
CMSF MLGF CTEM S&FA OA AA KAPPA | OA AA  KAPPA | 0OA AA  KAPPA

1 94.81 95.47 9438 | 9896 9832 9861 | 8325 8376  78.46
2 \ 96.20 96.68 9589 | 9920 9878 9893 | 84.66 8558  80.18
3 \ \ 96.69 9721 96.42 | 99.34 9881  99.12 | 85.08 8559  80.68
4 \ \ N 96.87 97.34 96.61 | 99.40 9895  99.19 | 8543 8592  8l1.17
5 N N \ 97.02 97.47 96.78 | 99.54 99.03 9939 | 8533 8570  80.97
6 \ \ \ \ 97.23 97.67 97.01 | 99.59 99.06 99.46 | 8596 86.15  81.81

fusion, further improving classification performance. The OA
improvement on the three datasets is 0.49%, 0.14%, and 0.42%,
respectively. Case 4-5 adds CTEM and S&FA respectively,
based on Case 3 to achieve fine modeling of local and global
areas, and both modules have significantly improved classi-
fication performance. Especially, due to the MUFFL dataset

having more dense trees, the CTEM module sensitive to local
complex texture features has a greater improvement on OA
than S&FA. In the other two datasets, S&FA showed a greater
improvement in OA than CTEM. Case 6 has a complete model
structure, and compared to Case 1, the OA on three datasets has
improved by 2.42%, 0.63%, and 2.71%. Obviously, each module
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Fig. 9.
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Classification maps of different methods on the MUUFL dataset. (a) Ground true. (b) FusAtNet (76.58%). (c) S2ENet (82.00%). (d) GLT (84.55%).

() MFT (82.18%). (f) HCT (80.02%). (g) CALC (82.54%). (h) GAMF (81.96%). (i) CrossHL (85.43%). (j) GESFN (85.96%).
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has significantly improved classification accuracy, and different
modules can effectively work together.

E. Parameter Analysis

1) Effect of Different Hyperparameters: During the process
of model training, different combinations of learning rate and
batch size can have a significant impact on the classification
performance of the model. To select the most suitable learning
rate and batch size for GFSEN, some detailed experiments
have been conducted on three datasets. Specifically, select the
learning rate from {‘5e-5°, ‘le-4’, ‘5e-4’, ‘le-3’, ‘5e-3’}, and
choose the batch size from {‘16°, ‘32°, ‘64, ‘128°, 256’}.
The experimental results are shown in Fig. 10, which illustrates
the changes in model performance under different parameter
settings. Fig. 10 shows the experimental results on the Houston

€& g

Overall Accuracy(%)
x
]
Overall Accuracy(%)

Impact of learning rate and batch size on OA. (a) Houston 2013. (b) Trento. (c) MUUFL.

2013, Trento, and MUUFL datasets. In Fig. 10, different col-
ors represent different OA ranges, with yellow indicating the
highest OA value and blue indicating the lowest OA value. By
observing Fig. 10, it is evident that the model is highly sensitive
to different learning rates and batch sizes on the same dataset.
This means that selecting appropriate hyperparameters is crucial
for improving model performance.

On the Houston 2013 dataset, we observed a significant
decrease in model performance as the learning rate increased.
On the Trento dataset, when the learning rate reaches 5e-4 and
the batch size drops to 32, there is a significant fluctuation in
model performance. The MUUFL dataset also shows a similar
trend. Overall, the combination of learning rate and batch size
within the range of {‘5e-5’,°le-4’} and {‘64 *,°128’} performs
well, especially when the learning rate is le-4 and the batch size
is 64, the model performance reaches its optimal level.
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TABLE V
COMPARISON OF FLOPS, PARAMETERS, AND TRAINING TIME ON THE HOUSTON 2013 DATASET

Complexity FusAtNet  S?ENet GLT MFT HCT CALC  GAMF CrossHL Ours

FLOPs(M) 3462.66 27.08 156.54 21.06 7.93 28.75 2551.16 41.90 47.01

Parameters 36.90M  270.85K  560.77K  313.07K  429.83K  284.14K  7.30M 432.75K 1.35M
Training Time(s) 2.77 0.29 2.42 0.24 0.23 0.32 4.01 0.28 0.45
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Fig. 11.  Impact of input patch sizes.

2) Effect of Different Input Patch Sizes: The input data for
GFSFEN includes HSI and LiDAR patches. Different sizes of
patches imply different spatial scale information of land cover.
Therefore, patch size is a key parameter that affects classification
performance. Fig. 11 shows the OA of three datasets at different
patch sizes {9 x 9, 11 x 11,13 x 13, 15 x 15}.

It can be clearly seen from Fig. 11 that the trend of OA
changes in the three datasets is first increasing and then decreas-
ing, reaching the optimal level at patch 11 x 11. However, as
the patch continues to increase, the classification performance
actually decreases. This is because the excessively large patch
size brings too much redundant information, which may make
it difficult for the model to capture key local features, thereby
reducing classification performance. In summary, selecting the
appropriate patch size is crucial for improving the classification
performance of GFSEN. A patch that is too small may not fully
capture the global contextual information in the image, while a
patch that is too large may increase the computational burden
and cause overfitting problems.

F. Complexity Analysis

A detailed comparison of the complexity of various methods
has been conducted on the Houston 2013 dataset. The evaluation
indicators include computational cost, parameter count, and
training time per epoch, where computational cost is quantified
by floating-point operations per second (FLOPs). It can be
clearly seen from Table V that FusAtNet based on attention
mechanism and multilayer convolution structure has the highest
computational cost and parameter count. The training time of
GAMF and GLT is longer compared to other methods, due to
the high complexity of GAMF’s graph structure and the need
for GLT to handle inputs at multiple scales. However, methods

such as MFT and HCT demonstrate relatively fast training
speed due to their lower parameter count and computational
requirements. Overall, the proposed method achieves optimal
classification performance while maintaining moderate FLOPs,
model parameters, and training time.

IV. DiscussIiON
A. Analysis of t-SNE Visualization

To further evaluate the classification performance of the
proposed GFSFN, t-SNE visualization comparisons were con-
ducted on the Houston 2013, Trento, and MUUFL datasets using
GLT, MFT, HCT, CrossHL, which have higher classification ac-
curacy among the comparison methods, and the GFSFN method
proposed in this article. From Figs. 1214, it can be seen that
the clustering effect of the method proposed in this paper is
the best. Compared with other methods, the method proposed in
this article has smaller intra class distances and better clustering
performance on some categories, especially the 8th and 11th
categories, on the Houston 2013 dataset. In the Trento dataset,
the method proposed in this article has relatively few cases of
category confusion, especially in the third category where there
is almost no confusion. On the MUUFL dataset, compared to
other methods, the proposed method has fewer cases of category
confusion in the 5th and 8th classes.

B. Analysis of Heatmap

In order to more intuitively demonstrate the feature extrac-
tion capabilities of the CTEM and S&FA modules, this arti-
cle presents the visualization results of the proposed module’s
thermal map, as shown in Figs. 15-17. Corresponding to Cases
3-6 from (a) to (d), cool colors represent low response and
warm colors represent high response. Obviously, the addition
of CTEM makes the model more sensitive to local complex
texture features such as trees, which is particularly evident in
the visualization of the Trento and MUUFL datasets. Compared
with Case3, increasing S&FA significantly reduces the globally
unresponsive regions in the feature map. The combination of
CTEM and S&FA achieved the best results, reflecting the ef-
fectiveness of the module and the advantages of complementary
global and local feature.

C. Analysis of Frequency Domain Attention

To verify and analyze the effectiveness of the proposed at-
tention module, the classification performance of the proposed
module is compared with those of four advanced frequency
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Fig. 14.  Comparison of t-SNE visualization results on the MUUFL dataset. (a) GLT,(b) MFT,(c) HCT,(d) CrossHL,(e) GFSFN.

Fig. 15.

domain attention modules in the field of image processing. The
experimental results are shown in Table VI. Among them, WSA
[47] and FSA [48] are based on discrete wavelet transform
(DWT), while MCFA [49] and FAM [50] are based on FFT, just
like our method. Specifically, WSA is an improvement based on
SE attention, which replaces the original pooling operation with
DWT, aiming to obtain more critical feature maps by aggregating
high and low frequency features. FSA decomposes input features
through DWT, performs traditional attention calculations on
low-frequency components, and finally restores feature shapes
through reverse DWT. In MSFA, the features are first mapped to

TABLE VI

it
1

12
1
10
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Comparison of heatmap results of different module on the Houston 2013 dataset. (a) Only CMGF. (b)4+CTEM. (¢)+S&FA. (d)+CTEM+S&FA.

COMPARISON OF OA WITH DIFFERENT FREQUENCY DOMAIN

ATTENTION MODULES

Module Houston2013 Trenton MUUFL
WSA [47] 96.56 99.25 85.07
FSA [48] 95.63 98.83 84.24
MCFA[49] 96.45 99.19 85.29
FAM [50] 96.01 98.91 84.94

Ours 97.23 99.59 85.96
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Fig. 16.

Comparison of heatmap results of different module on the Trento dataset. (a) Only CMGEF. (b)4-CTEM. (¢)+S&FA. (d)+CTEM+S&FA.

Fig. 17.

the frequency domain through FFT, and the real and imaginary
parts are filtered before being transformed back to the spatial
domain through IFFT for multiscale convolution operations.
FAM performs FFT on the features, performs global filtering
and high pass filtering to obtain high-frequency information, and
then uses IFFT to map back to the spatial domain and combine
the original features obtained through pointwise convolution.

Obviously, overemphasizing the learning of low-frequency
or high-frequency components is not conducive to effective
feature extraction. Therefore, the OAs of FSA and FAM are
relatively low. Other FFT based modules adopt preset filtering
operations to process frequency features, which may result in
the loss of specific information, while our S&FA constructs
attention weights in the frequency domain, and thus can re-
tain and utilize key information more effectively. The excellent
classification performance demonstrated by WSA also validates
the effectiveness of combining DWT and attention. Overall, the
attention module that combines spatial and frequency domain
feature processing can bring better feature learning ability and
classification performance, such as MCFA and our proposed
S&FA.

D. Analysis of Sampling Strategy

There are generally two strategies to divide the training set
and the testing set: random sampling and disjoint sampling. For

Comparison of heatmap results of different module on the MUUFL dataset. (a) Only CMGF. (b)+CTEM. (c)4S&FA. (d)+CTEM+S&FA.

random sampling, data from each category is randomly assigned
to the training or testing set according to a predetermined ratio
or specific quantity. For disjoint sampling, the dataset is strictly
divided into non overlapping training and testing sets. The
experimental results in this paper are based on random sampling.
To compare and analyze the performance differences of the
models under these two different sampling techniques, some
standard disjoint sampling experiments have been conducted on
the Houston 2013 dataset. The experimental results are shown
in Fig. 18. In Fig. 18, the line represents the experimental results
with random sampling as shown in Table I, and the bar graph
represents the experimental results with disjoint sampling. In
addition, three different colors represent OA, AA, and Kappa,
respectively.

It can be clearly observed from Fig. 18 that all methods
have lower results than random sampling when conducting
experiments using disjoint strategies. Specifically, the perfor-
mance difference between FusAtNet and GAMF is particularly
prominent, while other methods also show a certain degree of
performance degradation after implementing disjoint sampling.
FusAtNet relies on its complex convolutional structure, while
GAMF is based on graph attention techniques, both of which
exhibit strong spatial dependence. Therefore, their performance
under disjoint sampling is not satisfactory. Although random
sampling helps improve the robustness of the model, compared
to disjoint sampling, the random sampling strategy may also
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Fig. 18.  Experimental results of different sampling strategies on the Houston 2013 dataset.
come with the risk of information leakage. It is worth emphasiz- REFERENCES

ing thatregardless of which sampling method is adopted, random
sampling or disjoint sampling, the method proposed in this paper
has always achieved the best classification performance, which
fully demonstrates the effectiveness of the proposed method.

V. CONCLUSION

In this article, we propose a GFSFN to address the joint
classification problem of hyperspectral and radar data. The
proposed GFSFEN consists of three core modules: CMGF, S&FA,
and CTEM. To reduce the differences in heterogeneous data and
effectively fuse multimodal features, CMGF is proposed to fuse
the dilated convolution features of two modalities into spatial
features at the same channel depth, and then adaptively fuse the
joint features at different depths through a gating mechanism. To
address the neglect of frequency domain features in current joint
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weight matrix in the frequency domain to learn and model
global features, especially fine features, through the interaction
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enhance the extraction of local fine features, a convolution based
CTEM has been proposed, further improving the accuracy of
classification. Experiments on three common datasets show that
the GFSFN proposed in this article has excellent feature learning
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In future work, we will explore deeper feature representations
in the frequency domain and effectively combine them with spa-
tial domain features. At the same time, we will further consider
how to improve the model to enhance the local global correlation
of features, to further improve the classification performance and
training efficiency of the model.
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